新闻资讯

您的位置: > 首页 > 新闻资讯 > 清华大学教授:柔性传感技术在医疗领域最新突破

清华大学教授:柔性传感技术在医疗领域最新突破

发布时间:2018-05-08 访问次数:3880次 来源:电子说 分享:

2017年12月20日,清华大学航天航空学院、柔性电子技术研究中心冯雪教授课题组在Science Advances上发表了题为Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring的研究论文,报道《用于无创血糖监测的电化学双通道类皮肤生物传感系统》。 该成果基于类皮肤柔性传感技术建立了新的无创血糖测量医学方法,在人体皮肤表面实现了医学意义上的无创血糖测量并具有医疗级精度,为解决无创血糖动态连续监测提供了一条新途径,对全球数以亿计的糖尿病患者的治疗与慢病管理具有重要的社会意义。

在这一工作中,冯雪课题组发展了基于力学-化学耦合原理的电化学双通道无创血糖测量方法,利用可以与人体自然共型贴附的柔性电子器件,对皮肤表面施加不会引起皮肤不良反应的电场,通过离子导入的方式改变组织液渗透压,调控血液与组织液渗透和重吸收平衡关系,驱使血管中的葡萄糖按照设计路径主动、定向地渗流到皮肤表面,继而通过只有3.8微米厚的超薄柔性生物传感器件进行高精度测量。

为了实现皮肤表面的微量葡萄糖精准测量,冯雪课题组结合多年的可延展柔性电子器件研究经验,基于力学原理在1.2微米厚的薄膜上制备了具有四层功能层的类皮肤生物传感器。通过制备器件表面微结构实现了纳米级厚度的电子介体电化学沉积,利用基于液体表面张力和蒸发毛细力的仿生液滴转印方法,将多层超薄生物传感器从制备基底上无损地剥离下来,实现整体厚度只有3.8微米的类皮肤柔性生物传感器的制备。该传感器具有130.4μA/mM的葡萄糖测量灵敏度和对葡萄糖的高度选择性,重复测量误差小于1%。

冯雪教授表示,“柔性电子器件是一个新兴的多学科交叉领域,里面涉及力学、材料、化学、电子以及信息等多个学科。从个人角度而言,我觉得首先做科研要有开放的心态以及广阔的眼界,能够与不同学科的科研工作者沟通,听懂不同学科的语言,了解在不同领域的难点与痛点,多思考运用自身学科可以如何解决这些问题。”

客观上来看,固体力学和面向医疗的柔性电子器件看似跨度很大,但实际上有很深入紧密的联系。无机柔性电子,尤其是可延展电子器件的开创与力学很有渊源。力学分析对无机可延展柔性电子的结构设计和关键制备方法起到了开创性的指导作用。无机电子材料,包括金属、半导体等对应力应变非常敏感,如何设计功能单元、互联导线结构使得器件整体在柔性大变形环境中电子材料不发生破坏且保持优良性能是摆在柔性电子器件面前首当其冲的问题。从结构设计、器件制备到器件可靠性测试,柔性电子器件的各个阶段都需要力学分析。

当然仅仅依靠力学分析,不能完全解决柔性电子应用于医疗领域的各种问题。要将柔性电子领域向前推动,我们需要医学、信息、材料、化学、电子等多个学科的共同努力,医学提供应用场景与性能指标,材料、化学提供新型电子材料和新型界面,力学提出革新性的结构设计与可靠性保障,电子提供从微结构到系统集成的制备方法,信息提供通讯技术与数据挖掘。如此,多学科深入交叉,密切合作,快速迭代,才能最终形成一个真正能改变人们生活的成熟产业。固体力学是一门较为基础的学科,具有广泛的工程应用背景,这影响和决定了我的眼界与思维不会囿于一隅,可以很容易开展跨学科研究。

针对柔性传感技术未来发展如何?冯雪教授表示,“柔性医疗电子器件研究是一项面向应用的研究,因此基础科学与应用研究之间具有密切的联系。基础科学既解决应用问题,同时也受其驱动。应用研究既依赖于基础研究的进步也检验并真正释放基础研究的实际社会效应与价值。这两者之间具有天然的良性耦合,使得它们必然密不可分。对我而言,两者其实是一个有机的整体,互为增益,我都一样重视。在我的工作中,一方面在实验室开展基础研究,另一方面也与医学领域保持密切合作。”

关于未来,柔性电子的发展空间和潜力十足。它既有改变人们生活、提升生命质量的能力与愿景,也还存在较多瓶颈与空白有待我们突破与填充。对于布局,我认为从柔性电子整个领域的发展去考虑,它需要深入的基础研究来解决技术上的关键问题,也需要真正解决人类痛点问题的应用研究与研究成果转化,并逐步搭建起良好的生态环境,将基础研究、应用转化以及其他环节耦合在一起,形成良性发展的生态圈。从实际操作而言,基于柔性电子多学科交叉的特点,它急需整合各学科资源;基于它基础与应用并重的性质,它急需将科研界与产业界打通,从而使柔性电子领域进入高速发展时代。

备注:清华大学航院、柔性电子技术研究中心博士生陈毅豪为文章第一作者,冯雪教授是通讯作者。该研究工作得到了科技部973计划项目、国家自然科学基金项目的资助。


科创项目库

更多>>
  • microscopic AI sensor chip

    项目简介:We have developed a microscopic AI sensor chip (Smart Dust) featuring energy harvesting (this eliminates the use of toxic batteries) and bidirectional non-magnetic (RF-free) wireless communication. Its small size allows it to be easily embedded into ev

  • 半导体功率器件商业IDM项目

    项目简介:以最省預算及人力使中國更快速的赶上世界級领先的功率芯片集成電路廠 • 政府驱动的先进半导体工艺公司 • 5年内在中国建立第一家功率解决方案公司,10年内成为世界前4大 • 先进沟槽式工艺 • 领先市场的产品 • 有效率的成本花费和工艺的驱动 • 在地化的设计能力和工艺能力

  • 先进功率半导体芯片及IPM智能模块

    项目简介:公司成立于2019年,是一家创新创业型公司。公司拥有一流的海外以及国内专家团队,专注先进功率半导体芯片及IPM智能模块,利用团队在新能源汽车电子领域的丰富经验及知识产权,在资本及平台资源的支持下经营先进功率半导体器件+新能源汽车产业链,融合新技术,用研发创新赢得市场赞誉。 公司是以新型大功率高效电力电子器件的芯片设计、制造、销售为主要业务,产品应用广泛:节能灯、LED照明、充电器、各类开关电源、电磁灶、变频电机、电焊机、太阳能逆变器、电动自行车、电动汽车等。

  • 高端模拟集成电路芯片设计项目

    项目简介:主要产品及技术研发有3个方向,一是高速、高精度ADC、DAC核心关键技术、产品及IP研发;其次是用于智能装备领域的线性位移测量系列芯片、高端仪器仪表用芯片、工业物联网芯片;其三是以CT芯片为代表的高端医疗电子芯片。未来,公司拟围绕ADC核心技术,继续布局各种传感器读出电路芯片,应用于航空航天、核工业领域的抗辐照模拟芯片。